

Pavement Preservation within an Integrated Asset Management Framework

Southeast Pavement Preservation/Partnership Louisville KY May 28, 2014

Today's Discussion

- Introduction
- Pavement Preservation in Network Level PMS
- Historical Summary
- Current State
- Challenges
- Use within Network Level Analysis
- Summary

Pavement Preservation with PMS

- Pavement Preservation is a core feature of a network level PMS
- Preservation is modeled by modifying rather than replacing the performance prediction of a section
- Target treatments where they are most effective
 - Variable changes to improved condition
 - Variable changes to predicted performance
- Over time we have incorporated many tools to model preservation

Current Situation

- All of our clients utilize preservation within the PMS analytical framework in some way
- Preservation rules coded into the decision models
- Impact of preservation mostly based on empirical judgment
- Integrated systems are allowing better data capture
 - Over time the systems have matured
 - Users comfortable with the data entry process
 - Location accuracy and data entry QA can still be a problem
- Design assumptions made are not currently utilized by the PMS systems

Project and Treatment Selection

• Development of Decision Trees that include preservation

Models Incorporate Preservation Influence

Challenges

- Historical Data Capture
 - Multiple data sources
 - Lack of integration
 - Difficulty with location capture
- Modeling issues
 - Each state's data is different
 - Condition data without adequate preservation history leads to flat performance
 - Models configured with engineering judgment
- Theoretical issues
 - Estimating improvements
 - Estimating changes to performance
 - Interactivity between condition measures
 - Capturing/utilizing design information at the network level

Challenges- Historical Data Capture

- Many agencies have preservation treatments arising from multiple sources
 - In-house maintenance forces
 - Contracted work
- Lack of integration between systems
 - In many agencies the systems that track and/or capture work are not integrated
 - Disparate systems capture only the information required
 - Construction systems capture line items and quantities
 - Maintenance systems tend to capture activity amounts and costs
 - Presents challenges to convert and use the information in a network PMS
- Difficulty with location capture improving with mobile devices and better use of GIS/LRS

Challenges-Historical Data Capture

- Difficulties are now being overcome
 - Integrated systems automatically transfer data between maintenance and PMS systems
 - PMS systems being utilized more for scheduling some preservation activities performed by contract and by in-house forces
 - GPS, GIS and mobile technology should make location capture much better and easier for users
- Contracting and project scheduling/payments systems still present difficulties
 - Locations captured with text descriptions and/or approximate LRS references
 - Line items and payment tracking not easily translated to formats usable by PMS system (layer thicknesses and locations)

Challenges-Modeling

- Lack of historical data has created difficulties with estimating effectiveness with an optimization framework
- Undocumented increases in pavement condition and performance due to preservation lost in the trends and not credited to preservation
- Causes historical modeling data to be "flat"
- Hard to compare pavement with and without treatments in order to objectively quantify benefits
- Many software configuration elements are done with best engineering judgment

Challenges-Modeling

- The modeling process allow the optimization systems to estimate the benefits of preservation treatments
 - Estimates when is the best time to apply a treatment
 - Estimates the benefit gained per dollar spent
- So far these settings have been largely empirical within network level systems
- All the states utilize different data collection techniques
 and measures
 - Make it difficult to translate lessons learned from agency to agency
 - Requires partnerships with research
 - Now that better records are being captured more opportunities for research

Challenges-Modeling

- Incomplete history shows flat deterioration trends
 - Does not allow the optimization to objectively quantify the improvements gained
 - In many cases shows unreasonable deterioration trends due to lack of information
- As better data becomes available need to partner with research teams to identify
 - Objective measures of post treatment performance
 - Objective measures of treatment effectiveness with respect to
 - Application timing
 - Multiple applications
 - Comparisons to un-treated sections
- Capture these values at the Network Level to incorporate into long range planning

Challenges – Modeling Treatment Effectiveness

- Modeling is used to set the projected "effectiveness" of preservation
- Captured as the different in performance between the treated and untreated pavement
- When analyzing strategies the systems can look at comparing overall pavement condition to budgets for the whole analysis period
- Affected by two entities
 - Improvement in condition immediately post-treatment
 - Change or reduction in predicted deterioration
- The selection of preservation treatments is greatly affected by these quantities in comparison to the performance of rehabilitation treatments

Challenges – Theoretical

- Modeling frameworks being developed have to be applied to local situations and network level data
- Dealing with interactivity
 - In the long run addressing cracking at the right time provides better long term serviceability
 - Need better models applicable to the network level that capture these interactions
- Need to incorporate planned preservation in rehabilitation and new construction into the network level systems
 - Capture the design assumptions for life cycles
 - Incorporate them into the long range planning
 - Account for variances between original designs and actual performance to be sure planned preservation is applied at the right time.

Network Level Analysis

- A PMS can model preservation as one of the tools in the management toolbox
- Investigate the effects of preservation policies and priorities by comparing scenario outputs
- Show the benefits of preservation policies compared to other methods
- Justify needs for preservation budgets
- Can show the impacts of current programs against optimal programs

Scenarios – What types of "What If"

- Evaluate network condition with and without money dedicated to preservation
- Evaluate the amount of money allocated to preservation if no constraints are placed on the allocation
 - What are the impacts on average condition
 - What happens to the network condition distribution
- Setup scenarios to maintain the network with and without criteria on maximum deficient mileage
- Quebec is evaluating palliative treatments
 - "band aid" poor roads until funding can be made available to bring those roads onto a normal life cycle
 - Allows them to keep focus on preservation for roads in good condition
 - Helps to cap poor roads without sacrificing beneficial treatments

Network Analysis - Outputs

- Educational compare optimized work plans to:
 - worst-first,
 - ranking and other prioritization methods
- The PMS analysis allows for what-if scenarios to be generated for upper level trade-off analysis
 - Use the PMS to provide feedback for high level cross asset analysis
 - Evaluate the impacts of changed funding or policies
- Utilize generated work plans as initial estimate of the preservation program (contracted and in-house)
- Use the finalized work plan to create construction history templates to assist with data entry after the work is completed

Network Analysis Outputs

Transpor		_																				System Role 🗸
Qu	AgileAssets Managemen	▼ nt Svste	m (Production (PN	IS QC@AGILEDE	3P)1 Version 7.X	Build 18595												★ Q	uick Links	5 🔻	🔅 Settings 🗸	? Aide
Setup	D T Databases T Network A	nalysis	Reports	•	74																	
1	🖌 Menu Root > Network Analysis > Multi-Constraint Optimization 🖕									Sauvegarder les données										C Récupérer le	s données	
Setu	p Results Constr Results Report	Sum	mary Reports																			
Su	Immary Plots Menu 🔻								1													<u>^</u>
0	ptim Graph	GRAF	HREP_TYPE_ID	Y Label Y M	ax Value Y	Min Value 🗘 Y Ma	jor Tic	Y Minor Tic	^		Т	reatn	nent (Cost b	y Bu	lget C	Catego	ory				
Tr	eatment Cost by Pavement Type	Bar		Budget		0					340000000								atif 🗖 Dol	lliatif	Drávantif	
Tr	eatment Cost by Treatment	Bar		Budget		0					30000000							- Cur	atii - Poi	moun	= Provonal	
► Tr	eatment Cost by Budget Category	Bar		Budget		0			-		280000000 -							-				
Le	ength by Treatments	Bar		Miles		0					26000000 -											
P	ercent Miles Treated by Pavement Type	Bar		Percent	1	0			=		220000000 -							-				
P	ercent Above 70 for IRI by Pavement Type	Bar		Percent	1	0				get	200000000 + 180000000 +											
A	vg IRI by Functional Class	Bar		Value	100	0	10	2		Bud	16000000 -							-				
•	< 1 2 3 > >> 7 pages (13 rows)						*	-	140000000 -											=		
<4									100000000 -		_					-						
Se	elected Scenarios Menu 🔻 📲		Graph Data	Menu 🔻	_				1		80000000 -											
U	ser ID Scenario #		Optim Graph		Scenario #	Series Name	X VAL	Y Values	^		40000000 -											
			 Treatment Cost 	by Budget Catego	ory New #1601	Curatif	2020	173840608			20000000 -											
			Treatment Cost	by Budget Catego	ory New #1601	Préventif	2020	94816039			0	n m	4	<u>ن</u> ب	2	<u> </u>	8	2				
			Treatment Cost	by Budget Catego	ory New #1601	Palliatif	2020	31283168				8 8	3	8 8	3	8 8	30	50				
			Treatment Cost	by Budget Catego	ory New #1601	Curatif	2021	194639754														
			Treatment Cost	by Budget Categ	ory New #1601	Préventif	2021	77768938														
									-					Scena	rio Yea							
<	< < > >> 0 pages (0 rows)		<< < 1 2 3	4 5 6 > >>	1 pages (5 row	s)			<													•

Impact Analysis

Evaluate Impact on Bridge, Pavement and Overall System

Summary

- The key element is modeling the preservation as a modification to the pavement performance
- Until recently provisions for gathering and keeping
 treatment history was difficult
- In recent years many agencies are able to gather more accurate history
- The effects of pavement preservation as modeled within network level systems has so far been mostly empirically developed

Summary

- With better integrated systems and more accurate data calibration of the models used within PMS can be improved modeling
 - Continue focus on accurate data collection of treatments
 - Automate the data collection for upload to the PMS where possible
- Better data sources can be used to research more objective calibration of the PMS
 - Better estimation of modified performance
 - Better estimation of treatment impacts
 - Better estimation of interactivity between preservation
- The PMS can be used to "bubble-up" to the larger asset management model and provide ability to estimate the impacts of funding changes across all agency assets

